
Φύλλο οδηγιών MIPS

Αριθμητικές και Bitwise Εντολές
Όλες οι αριθμητικές και bitwise εντολές μπορούν να γραφτούν με δύο τρόπους:

1. add t0, t1, t2 

• προσθέτει δύο καταχωρητές και τοποθετεί το αποτέλεσμα σε έναν τρίτο καταχωρητή. 
• αυτό κάνει t0 = t1 + t2 

2. add t0, t1, 4 

• Προσθέτει έναν καταχωρητή και μια σταθερά και τοποθετεί το αποτέλεσμα σε έναν δεύτερο καταχωρητή. 
• αυτό κάνει t0 = t1 + 4 

Το i σημαίνει «άμεσος», αφού οι αριθμοί μέσα σε εντολές ονομάζονται άμεσοι.

Μερικές φορές για αυτήν τη δεύτερη μορφή, θα τη δείτε γραμμένη ως addi ή subi. Αυτά είναι εντελώς ισοδύναμα, απλώς ένα διαφορετικό όνομα 

για την ίδια εντολή.

Εντολή Λειτουργία Περιγραφή
neg a, b a = -b δίνει το αρνητικό του b.
add a, b, c a = b + c προσθέτει προσημασμένους αριθμούς.
sub a, b, c a = b - c αφαιρεί τους προσημασμένους αριθμούς.
mul a, b, c a = b * c δίνει μόλις 32 bit προσημένου πολλαπλασιασμού.
div a, b, c a = b / c δίνει το πηλίκο της προσημασμένης διαίρεσης.
rem a, b, c a = b % c δίνει το υπόλοιπο της προσημασμένης διαίρεσης.
addu a, b, c a = b + c προσθέτει αριθμούς χωρίς πρόσημο.
subu a, b, c a = b - c αφαιρεί αριθμούς χωρίς πρόσημο.
mulu a, b, c a = b * c δίνει μόλις 32 bit πολλαπλασιασμού χωρίς πρόσημο.
divu a, b, c a = b / c δίνει το πηλίκο της μη πρόσημης διαίρεσης.
remu a, b, c a = b % c δίνει το υπόλοιπο της μη πρόσημης διαίρεσης.



Εντολή Λειτουργία Περιγραφή
mfhi a a = HI μετά mul, δίνει υψηλά 32 bit. μετά div, δίνει υπόλοιπο.

mflo a a = LO μετά mul, δίνει χαμηλά 32 bit. μετά div, δίνει πηλίκο.
not a, b a = ~b δίνει το bit-συμπλήρωμα του b (όλα τα bit έχουν αντιστραφεί).
and a, b, c a = b & c αριθμοί AND ανά bit.
or a, b, c a = b | c αριθμοί OR ανά bit.
xor a, b, c a = b ^ c αριθμοί XOR ανά bit.

Εντολές κύλησης 
Το MIPS αποφάσισε να υλοποιήσει τις μετατοπίσεις λίγο διαφορετικά από τις υπόλοιπες αριθμητικές και bitwise εντολές.

Εντολή Λειτουργία Περιγραφή
sll a, b, imm a = b << imm μετατόπιση προς τα αριστερά κατά ένα σταθερό ποσό.
srl a, b, imm a = b >>> imm μετατόπιση προς τα δεξιά χωρίς πρόσημο (λογική) κατά μια σταθερή ποσότητα.
sra a, b, imm a = b >> imm μετατόπιση της αριθμητικής προς τα δεξιά κατά μια σταθερή ποσότητα.
sllv a, b, reg a = b << reg μετατόπιση προς τα αριστερά κατά το ποσό σε ένα μητρώο.

srlv a, b, reg a = b >>> reg μετατόπιση προς τα δεξιά χωρίς πρόσημο (λογική) κατά το ποσό σε ένα 
καταχωρητή.

srav a, b, reg a = b >> reg Μετατόπιση προς τα δεξιά στην αριθμητική κατά το ποσό σε έναν καταχωρητή.

Εντολές Μεταφοράς Δεδομένων
Υπάρχουν δύο εντολές «φόρτωσης» που δεν έχουν πρόσβαση στη μνήμη. Επίσης η move δεν μετακινεί, αντιγράφει

Εντολή Λειτουργία Περιγραφή
li a, imm a = imm τοποθετήστε μια σταθερή τιμή σε ένα μητρώο.
la a, label a = &label εισάγετε τη διεύθυνση στην οποία δείχνει μια ετικέτα σε ένα μητρώο.
move a, b a = b αντιγραφή τιμής από ένα μητρώο σε ένα άλλο.
Οι υπόλοιπες εντολές φόρτωσης/αποθήκευσης έχουν πάντα πρόσβαση στη μνήμη. Όλες αυτές οι εντολές μπορούν να γραφτούν με τέσσερις 
διαφορετικούς τρόπους:



1. lw t0, var 

• αντιγράφει μια λέξη (τιμή 32-bit) από τη μεταβλητή μνήμης var στον καταχωρητή t0 

• var πρέπει να έχει δηλωθεί ως κάτι σαν: 

  .data
  var: .word 0

2. lw t0, (t1) 

• αντιγράφει μια λέξη από τη διεύθυνση μνήμης που δίνεται από t1 στον καταχωρητή t0 

3. lw t0, 4(t1) 

• αντιγράφει μια λέξη από τη διεύθυνση μνήμης που δίνεται από t1 + 4στον καταχωρητή t0 

4. lw t0, arrayname(t1) 

• αντιγράφει μια λέξη από τη διεύθυνση μνήμης που δίνεται από arrayname + t1 στον καταχωρητή t0 

ΥΠΕΝΘΎΜΙΣΗ: αποθηκεύει τιμές αντιγραφής ΑΠΟ τους καταχωρητές ΣΤΗ μνήμη. Άρα ΑΠΟ την αριστερή πλευρά ΣΤΗ διεύθυνση στη δεξιά 
πλευρά.

Εντολή Λειτουργία Περιγραφή
lw reg, addr reg = MEM[addr] φορτώνει τα 4 byte ως addrτιμή 32-bit σε reg.

lh reg, addr reg = sxt(MEM[addr]) φορτώνει τα 2 byte ως addrυπογεγραμμένη τιμή 16-bit στο reg.

lb reg, addr reg = sxt(MEM[addr]) φορτώνει το 1 byte στο addrως υπογεγραμμένη τιμή 8-bit στο reg.

lhu reg, addr reg = zxt(MEM[addr]) φορτώνει τα 2 byte ως addrμη υπογεγραμμένη τιμή 16-bit στο reg.

lbu reg, addr reg = zxt(MEM[addr]) φορτώνει το 1 byte at addrως μη υπογεγραμμένη τιμή 8-bit στο reg.

sw reg, addr MEM[addr] = reg αποθηκεύει την τιμή του regστη μνήμη ως 4 byte ξεκινώντας από addr.

sh reg, addr
MEM[addr] = 
lo16(reg)

αποθηκεύει τα χαμηλά 16 bit του regστη μνήμη ως 2 byte ξεκινώντας από 
addr.

sb reg, addr MEM[addr] = lo8(reg) Αποθηκεύει τα 8 χαμηλότερα bit regστη μνήμη ως 1 byte στο addr.
Τέλος, υπάρχουν δύο ψευδο-εντολές στοίβας που χρησιμοποιούνται για την αποθήκευση και την επαναφορά τιμών σε συναρτήσεις:

Εντολή Λειτουργία Περιγραφή
push reg sp -= 4; MEM[sp] = reg ωθεί την τιμή του regστη στοίβα κλήσεων



Εντολή Λειτουργία Περιγραφή
pop reg reg = MEM[sp]; sp += 4 εμφανίζει την κορυφαία τιμή στοίβας κλήσεων και την τοποθετεί σεreg

Εντολές Ροής Ελέγχου Χωρίς Όρους
Αυτά αλλάζουν πάντα τον υπολογιστή σε μια νέα τοποθεσία.

Μνημονικός Λειτουργία Περιγραφή
j label PC = label πηγαίνει στην οδηγία στο label.

jal label ra = PC + 4; PC = label
Η κλήση της συνάρτησης στο label. αποθηκεύει τη διεύθυνση επιστροφής 
στο ra.

jr reg PC = reg πηγαίνει στην εντολή της οποίας η διεύθυνση είναι στο reg, συχνά ra.

syscall (δείτε την περιγραφή) εκτελεί τη συνάρτηση κλήσης συστήματος της οποίας ο αριθμός είναι σε v0.

Εντολές Ροής Ελέγχου Υπό Όρους
Όλες αυτές οι οδηγίες ελέγχουν τη δεδομένη συνθήκη και, αν είναι:

• true, πηγαίνει στην δεδομένη ετικέτα 
• false, πηγαίνει στην επόμενη εντολή (δηλαδή δεν κάνει τίποτα) 

Επίσης, όλες αυτές οι οδηγίες μπορούν να γραφτούν με δύο τρόπους:

1. blt t0, t1, label 

• συγκρίνει δύο καταχωρητές (βλέπει αν t0 < t1) 

2. blt t0, 10, label 

• συγκρίνει έναν καταχωρητή με μια σταθερά (ελέγχει αν t0 < 10) 

Εντολή Λειτουργία Περιγραφή
beq a, b, label if(a == b) { PC = label } αν aείναι ίσο με b, πηγαίνει στο label.

bne a, b, label if(a != b) { PC = label } αν aΔΕΝ είναι ίσο με b, πηγαίνει στο label.

blt a, b, label if(a < b) { PC = label } αν aείναι μικρότερο από b, πηγαίνει στο label.

ble a, b, label if(a <= b) { PC = label } αν aείναι μικρότερο ή ίσο με b, πηγαίνει στο label.



Εντολή Λειτουργία Περιγραφή
bgt a, b, label if(a > b) { PC = label } αν aείναι μεγαλύτερο από b, πηγαίνει στο label.

bge a, b, label if(a >= b) { PC = label } αν aείναι μεγαλύτερο ή ίσο με b, πηγαίνει στο label.

bltu a, b, label if(a < b) { PC = label } το ίδιο με bltαλλά κάνει μια ανυπόγραφη σύγκριση.

bleu a, b, label if(a <= b) { PC = label } το ίδιο με bleαλλά κάνει μια ανυπόγραφη σύγκριση.

bgtu a, b, label if(a > b) { PC = label } το ίδιο με bgtαλλά κάνει μια ανυπόγραφη σύγκριση.

bgeu a, b, label if(a >= b) { PC = label } το ίδιο με bgeαλλά κάνει μια ανυπόγραφη σύγκριση

[Πηγή]

https://jarrettbillingsley.github.io/teaching/classes/cs0447/guides/instructions.html

	Φύλλο οδηγιών MIPS
	Αριθμητικές και Bitwise Εντολές
	Εντολές κύλησης
	Εντολές Μεταφοράς Δεδομένων
	Εντολές Ροής Ελέγχου Χωρίς Όρους
	Εντολές Ροής Ελέγχου Υπό Όρους


